Individually controllable nanopumps
We have explored a novel nanopumping concept that is based on electrokinetic flow through a conical nanopore equipped with a gate electrode. In contrast to other electrokinetic nanopumps, these pumps are individually controllable. Such enhanced control of the nanoworld may prove beneficial for a number of applications, among others DNA sequencing. Our work was highlighted on the web pages of the American Physical Society (), where further information can be found. https://physics.aps.org/articles/v15/s174
A. D. Ratschow, D. Pandey, B. Liebchen, S. Bhattacharyya, and S. Hardt, Resonant nanopumps: ac gate voltages in conical nanopores induce directed electrolyte flow, Physical Review Letters 129 (2022), 264501
Cloaking and shielding objects in a fluid flow
Among the best-known technologies deployed by Star Trek’s starships are their invisibility-inducing cloaking devices and their shields. Together with co-operation partners from the Technion, Israel, and IBM Research Europe we have developed a cloaking/shielding device for objects in microfluidic channels/chambers instead of starships. In cloaking mode, an object leaves the fluid flow around it undisturbed, and in shielding mode, the hydrodynamic forces on an object are eliminated. This principle may find a number of applications, for example in the manipulation of soft objects such as cells. See also . https://physics.aps.org/articles/v14/s57
E. Boyko, V. Bacheva, M. Eigenbrod, F. Paratore, A. D. Gat, S. Hardt, and M. Bercovici, Microscale hydrodynamic cloaking and shielding via electro-osmosis, Physical Review Letters 126 (2021), 184502.
Electroosmotic flow (EOF) induced by surface acoustic waves
Surface acoustic waves (SAW) are widely used in microfluidics for transporting and mixing liquids. SAWs are acoustic waves travelling along the interface between a solid and a fluid. Up to now, the electrokinetic effects due to SAWs have remained largely unexplored. We have theoretically studied the EOF induced by SAWs and found that in small-scale channels, the EOF velocity may significantly exceed the velocity due to the acoustic field. Therefore, SAW-induced EOF may be useful as a method for pumping liquids through small scale channels.
M. Dietzel and S. Hardt, Electroosmotic flow in small-scale channels induced by surface-acoustic waves, Physical Review Fluids 5 (2020), 123702.
Enhancement of electroosmotic flow on superhydrophobic surfaces
Together with cooperation partners from the Technion/Israel, we have studied the electroosmotic flow along superhydrophobic surfaces, augmented by gate electrodes. Via the charges created at the gas-liquid interfaces, the flow velocity can be increased by more than a factor of 10 compared to unstructured surfaces. In addition, the flow is entirely pH-independent. A summary of the main results can be found . here
S. Dehe, B. Rofman, M. Bercovici, and S. Hardt, Electro-osmotic flow enhancement over superhydrophobic surfaces, Physical Review Fluids 5 (2020), 053701.
Pattern formation in layers of DNA molecules
DNA molecules can be concentrated by electrophoretic accumulation at an interface between two immiscible polymer solutions. Apart from its relevance in applications, this process goes along with the formation of characteristic DNA concentration patterns, visible in the figure at the left. We have experimentally studied the concentration patterns and formulated a theory describing the pattern formation. The theoretical predictions based on linear stability analysis compare favorably with the experimental results.
Reference: S. Hardt, J. Hartmann, S. Zhao, and A. Bandopadhyay, Electric-field-induced pattern formation in layers of DNA molecules at the interface between two immiscible liquids, Physical Review Letters 124 (2020), 064501. DOI: 10.1103/PhysRevLett.124.064501
Electrophoresis of surface particles
The electrophoresis of particles immersed in a liquid is a well-studied phenomenon. However, what happens when a particle attached to a liquid surface translates along that surface driven by an electric field has been largely unknown. We have computed the electrophoretic mobility of a particle at the interface between two fluids with large viscosity contrast. For thin Debye layers, the Smoluchowki mobility is recovered. Generally, the mobility depends on the contact angle between the fluids and the particle. We have also calculated the interfacial deformation caused by the Debye layer around the particle.
Reference: M. Eigenbrod, F. Bihler, and S. Hardt, Electrokinetics of a particle attached to a fluid interface: Electrophoretic mobility and interfacial deformation, Physical Review Fluids 3 (2018), 103701. DOI: 10.1103/PhysRevFluids.3.103701
Thermoelectricity in confined liquid electrolytes
The electric field induced in a bulk phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the dissolved ion species. We have shown that such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between walls carrying a charge density. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which —for narrow channels— may cause thermovoltages larger in magnitude than for the classical Soret effect. On the left, the corresponding (scaled) Seebeck coefficient is plotted for different values of the surface charge density against the (scaled) channel width.
Reference: M. Dietzel and S. Hardt, Thermoelectricity in confined liquid electrolytes, Physical Review Letters 116, 225901 (2016)